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POSITIVE SPEED OF TAGGED PARTICLE WITH +1,2 JUMPS IN SYMMETRIC EXCLUSION
PROCESS ON Z
PHD THESIS

Abstract. We prove that the position of the tagged particle X for the modified exclusion process on Z, in which the tagged particle jumps £1, 2

steps with rate % while the other particles jump =1 steps with rate %, satisfies ﬁ;) converges in distribution to a non-degenerate Gaussian random

variable with zero mean.
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2 POSITIVE SPEED OF TAGGED PARTICLE WITH =1, 2 JUMPS
1. Introduction

We observe the trajectory of the particle which at time 0 is located at the origin in the exclusion process . We
call this particle the tagged particle. Let X; denote the position of the tagged particle in the exclusion process
on the lattice Z? with initial distribution given by 7, = v,{-|£(0) = 1}, where v, is the homogeneous product
measure on {0, 1}Zd with constant density 0 < a < 1. We define a modified exclusion model on the lattice Z
as follows: the tagged particle jumps to neighbours at distance 41, 2 with rate % and the other particles perform
nearest neighbour jumps with rate % Our main result is the following:

Theorem 1. The position of the tagged particle, X, satisfies X/ \/t converges in distribution to a normal random
variable with non-zero variance and zero mean.

For a general (not necessarily symmetric) exclusion process on Z%, let Q) be the generator of the tagged particle
process and D (u) the Dirichlet form of a (sufficiently nice) function w on {¢ : £(0) = 1},i.e. D(u) = Dgy(u) +
D..(u), where Dy (u) and D, (u) are given by

D= [ 3 p0.)ulne) ~ u(©)(1 - €) dr(€)

z€Z\{0}

D)= [ peg)u(tey)  u(e) (o).
x,y€Z\{0}
We let 7 denote the drift of the tagged particle given by ¢(¢) = 3" ap(0, 2)(1 — &(z)), 1 the centered drift given
by ¢ =1 — [(€) dVa(€) and uy for A > 0 is defined via Auy — Quy = ). If condition H_, holds, i.e. there

exists a positive constant C' such that both inequalities

' JEGIG du—a@\ < C/D) 0

and
\ [u@@uie du—a@] < 0\/Dlw) @

hold for all A > 0 and all (sufficiently nice) functions u then Liggett proved that % converges in distribution
to a mean zero Gaussian random variable (Theorem 4.50 on page 295 of [21]). The condition was shown to hold
when p(-, -) has mean zero (i.e. Y zp(0, x) = 0) by Varadhan in 1995 ([33]) and for non-zero mean for d > 3 by
Sethuraman, Varadhan and Yau in 2000 ([29]). The Gaussian random variable might in fact be degenerate. This

was proven by Arratia in 1983 ([3]) for nearest neighbour symmetric jumps for d = 1. In fact he proved that t;fgts

converges in distribution to a Gaussian random variable with variance \/2/_7r(1 — «)/a. Non-degeneracy was
proven for nearest-neighbour non-symmetric transition rates on Z by Kipnis in 1986 ([14]) and in the aforemen-
tioned cases for which conditions (fll) and (B)) hold that do not fall under Arratia’s treatment. Landim et al. ([19])
also studied an exclusion process model on 7Z in which the tagged particle behaves differently from all the other
particles. In their model the tagged particle performs asymmetric nearest neighbour jumps while the rest of the
particles perform symmetric nearest neighbour jumps. However, I’m not aware of any analogue of Theorem [] in
which the tagged particle behaves differently from the other particles.

The exclusion process has many applications to other areas of science. TASEP, totally asymmetric exclusion
process, was first introduced in 1968 to describe ribosome motion along a piece of mRNA during translation ([25]).

In its simplest form, the model consists of a one-dimensional lattice of NV points, denoted by 7 = 1,- - -, N, and
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with spacing a = L/N, where L is the total length of the lattice (typically, we set L. = 1). The most common
boundary conditions are as follows: particles are added to the left boundary of the lattice (+ = 1) at rate o and
removed from the right boundary of the lattice (¢ = V) at rate (3. Particles on the lattice attempt jumps to their
right neighbouring site at rate p = 1, provided that the destination sites are unoccupied. This toy model serves
as a description of a ribosome moving from codon to codon on an mRNA strand. We can think of each particle
on the lattice as a ribosome. Just like the particle, the ribosome attaches to the mRNA at the start codon (the left
boundary of the lattice). Then the ribosome moves along the mRNA strand in a specific direction called the 5’ to
3’ direction, translating one codon in the mRNA at a time. This naturally corresponds to the asymmetric nature
of TASEP. In addition, TASEP captures the most basic ribosome-ribosome property by forbidding two ribosomes
from occupying the same codon.

Since its introduction, the original TASEP model has been modified to transform it into a more realistic model.
One important modification, called TASEP/LK, where LK stands for Langmuir kinetics, was introduced by Parmeg-
giani et al. ([28]). TASEP/LK is defined as follows: TASEP is extended with the possibility of particles attaching
to the lattice at rates w4 and detaching from a lattice and moving to an either infinite or finite reservoir at rate wp.
TASEP/LK is useful for studying molecular motors, since they are able to attach and detach from their associated
filaments or “tracks”. In fact, there is a high variability of the rates at which attachment and detachment occurs,
and the variability is related to the biological function of the motor ([[l],[32]).

Another modification that can be added to TASEP is the use of multiple coupled one-dimensional lattices. In
particular, we can couple two TASEP “lanes” together by letting particles hop back and forth between the lanes
with some characteristic rates s; and ss. Such a process is relevant to studying molecular motors which move
along a set of parallel tracks ([26],[[11]). TASEP coupled with multi-lane SEPs (symmetric exclusion processes) is
useful for modelling vehicular traffic ([34]).

Another natural modification of TASEP which models the movement of ants, called the unidirectional ant-trail
model (ATM), was introduced by Chowdhurry et al. in 2002 ([5]). In ATM ants move strictly on a one-dimensional
lattice with L sites. Each site can either be occupied by one of /V ants or be unoccupied. Ants leave marks on
sites which they occupy called pheromones, so each site is either marked or unmarked by a pheromone. If a site is
not occupied by an ant but contains a pheromone mark, then the pheromone mark evaporates at rate f. Otherwise,
whenever an ant occupies a site then the site also contains a pheromone mark and the mark only starts evaporating
once the ant leaves the site. Unlike in TASEP, the hopping rate of particles p at site % is not constant and depends
on the existance of pheromone marks at site ¢ + 1. If site ¢ + 1 is unoccupied by an ant but contains a pheromone
mark, then the hopping rate is p = (), while if the site ¢ + 1 is unoccupied by an ant and does not contain a
pheromone mark, then p = ¢ < (). So the presence of pheromone marks leads to an increase in the hopping
rate from ¢ to (). Chowdhurry et al. pointed out the relations between the unidirectional ant-trail model and the
bus route model (BRM) and the vehicular traffic on freeways model called the Nagel-Schreckenberg model (NS
model). Chowdhurry et al. also pointed out in 2004 the relationship to the zero range process (ZRP) ([18]). In
addition, the density fluctuation field associated to the accelerated generator of asymmetric exclusion converges in
law in Skorohod space to the stationary energy solution of the Burgers equation (for more details see [[L0]).

The exclusion process is similar to the random stirring process (also known as the random interchange process), a
random process on graphs where a different particle is placed on each of the vertices and Poisson clocks are placed

on the edges and whenever a clock on an edge rings the particles at the endpoints of the edge switch positions
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(we replaced clocks on vertices with clocks on edges, all the particles are different, and once the clock rings
the step is deterministic and does not depend on the weight given to the neighbours). We can think of it as a
sequence of random transpositions applied to the identity permutation. The existence of large cycles in the random
permutation after some time has been studied on trees ([[L3]), the complete graph on n elements (see e.g. [4]) and
the hypercube ([[L7]). Note in the case of the complete graph, the stirring process is obtained by simply applying a
sequence of random transpositions. The stirring process on the complete graph can be thought of as the simplest
card shuffling method, whereby at each shuffling step two random cards are removed from the deck of cards and
exchanged. This simple card shuffling technique was analyzed by Diaconis and Shahshahani ([[7]). Other card
shuffling methods were also explored, including the riffle shuffle (the deck is roughly divided into half and the two
halves are interleaved) ([2]), the cyclic-to-random shuffle (at step ¢ the random card selected is exchanged with the
card at position £ mod n) ([B1]) and the “semi-random transposition” shuffle (any shuffle in which a random card

is exchaged with another card chosen according to an arbitrary rule which is either deterministic or random) ([27]).

2. Preliminaries

The results and definitions in this section can be found in chapter I of Liggett’s book Interacting Particle Systems
([23]) and in chapter 3 of Liggett’s other book Continuous Time Markov Processes ([24]). Let X be either a compact
or a locally compact metric space with measurable structure given by the o-algebra of Borel sets 3. We say a real-
valued function f on a locally compact space X vanishes at infinity if for each ¢ > Otheset {z € X : |f(z)| > €}
is compact. Let C'(X) denote the collection of real-valued continuous functions on X in the compact case or the
collection of real-valued continuous functions on X vanishing at infinity in the locally compact case and in both
cases the space is equipped with the supremum norm. Let P denote the set of probability measures on X endowed
with the topology of weak convergence: p,, — piff [ fdp, — [ fduforall f € C(X).

Let D]0, co) denote the set of right continuous functions 7). : [0, c0) — X with left limits. For s € [0, 00) let
75+ D]0,00) — X be defined via 7(7).) = 7. Let F be the smallest o-algebra on D[0, co) relative to which all
the mappings 7, are measurable. For ¢ € [0, 00) let F; be the smallest o-algebra on D0, 0o) relative to which all
the mappings 7 for s < ¢ are measurable.

Definition 1. A Markov process on X is a collection {P", 7 € X'} of probability measures on D[0, co) indexed
by X with the following properties:

(i) P"[{¢ € D[0,00) : § =n}] = Lforalln € X.
(i) The mapping 7 — P"(A) from X to [0, 1] is measurable for each A € F.

(iii) P {nSJF_ € A‘fs} =P (A) (P")-as. foreachn € X and A € F and each s > 0.

The expectation corresponding to P will be denoted by E". Thus, E"(Z) = || D[0,00) Z dP" for any measurable
function Z on D[0, co) which is integrable relative to P". For f € C'(X) we write (S(t)f)(n) = E"f(n,).
Definition 2. A Markov process {P", 7 € X'} is said to be a Feller process if S(t) f € C'(X) for each ¢ > 0 and
felC(X).

We recall the definition of a Markov pregenerator.

Definition 3. A (usually unbounded) linear operator 2 on C'(X') with domain D({2) is a Markov pregenerator if

it satisfies
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(i) If X is compact: 1 € D(Q2) and 21 = 0. In the non-compact case: for small positive \ there exists
fn € D(Q) so that g, = f, — AQf, satisfies sup,, ||gn||cc < o0 and both f,, and g, converge to 1

pointwise.
(ii) D() is dense in C'(X).
(i) If f € D(Q), A > 0and f — AQf = g, then

inf f(£) = inf g(&). 3)

feXx {eX

In order to verify condition (iii) the following criterion is useful in the compact case, which appears in Liggett
([23]) as Proposition 2.2.
Lemma 1. Suppose that the linear operator €2 on C'(X) satisfies the following property: if f € D(2) and 7 is
such that f(n) = mingex f(€), then (Qf)(n) > 0. Then (2 satisfies condition (iii) of Definition .
We need the following definition for Lemma [.
Definition 4. A linear operator {2 on C'(X) is said to be closed if its graph is a closed subset of C'(X) x C(X).
A linear operator  is called the closure of € if €} is the smallest closed extension of §).
Lemma 2. Suppose ) is a Markov pregenerator. Then 2 has a closure 2 which is also a Markov pregenerator.
We are now ready to define a Markov generator.

Definition 5. A closed Markov pregenerator €2 is called a Markov generator if the range of I — \() satisfies
R(I - Q) = C(X) @

for all sufficiently small A > 0.
We note that a Markov generator satisfies the following stronger property, which is Proposition 2.8 in chapter I
of Liggett ([23].)

Lemma 3. (i) A bounded Markov pregenerator is a Markov generator.

(i) A Markov generator satisfies R(I — AQ2) = C'(X) forall A > 0.
We recall the definition of a Markov semigroup.
Definition 6. A family {S5(¢),¢ > 0} of continuous linear operators on C'(X) is called a Markov semigroup if it

satisfies
(i) S(0) = I, the identity operator on C'(X).
(i) The mapping t — S(t) f from [0, c0) to C'(X) is right continuous for each f € C'(X).
(iii) S(t+s)f = S(t)S(s)f foreach f € C(X) andall s,t > 0.

(iv) If X is compact: S(t)1 = 1 forallt > 0. In the non-compact case: there exist f,, € C(X) so that
sup,, || fulloo < 00 and S(t)f,, converges to 1 pointwise for each ¢ > 0.

(v) S(t)f > 0forallt > 0 whenever f € C'(X) is non-negative.

We note that in the compact case if we apply S(t) to || f|| £ f, then by (iv) and (v) we conclude that S(t) is a

contraction semigroup, i.e. satisfies ||S(¢) || < ||f||s forall f € C(X) and all ¢ > 0. The relation between

Markov semigroups and Feller processes is given via Theorem 3.26 in chapter 3 of [24].
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Lemma 4. If S(t) is a Markov semigroup, then there is a Feller process {P", 7 € X} satisfying

E"f(m) = (S@)f)(n) )

forallp € X,t > 0and f € C(X).
The distribution of the stochastic process (7;) is given in the definition below.
Definition 7. Suppose {S(t),¢ > 0} is a Markov semigroup on C'(X). Given u € P, uS(t) € P is defined via

the relation

[ s = [ s du ©)

for each f € C'(X). The probability measure S(¢) is interpreted as the distribution of 7, when 7 is distributed
according to .
Definition 8. We say that ;. € P is stationary for the process (1;) if uS(t) = p forall t > 0. We let Z denote the
class of stationary measures for the process (7;) and let Z, denote its extreme points.

The stationary measures of the process are determined by the generator via the following result, which is part of
Proposition 1.8 in chapter I in Liggett ([23]):
Theorem 2. A probability measure £ on {0, 1} is stationary for (1) iff

/Qfdu:O

Proposition 1.8 from Liggett also provides the following result in the compact case:

for all cylinder functions f.

Theorem 3. 7 is a non-empty compact convex set.

The relation between Markov generators and Markov semigroups is given via the following theorem, which can
be found in chapter IX of Yosida ([35]).
Theorem 4. (Hille-Yosida) There is a one-to-one correspondence between Markov generators {2 on C'(X) and

Markov semigroups S(t) on C'(X'). The correspondence is given by

i) D) ={f € C(X) : limy % exists} and Qf = lim, o 2L forall f € D(Q).

t

(i) S(t)f = limyoo(I — £Q)7" f forall f € C(X)and t > 0.

In addition, if f € D(2) then S(t)f € D() forall t > 0 and for all s > 0, (d/ds)S(s)f = QS(s)f =
S(s)Qf.

Note that €2 can only be defined on D(2), a dense subset of C'(X) in part (i), while by Def. § (I — Q) ! is
defined on all C'(X) for all A > 0 sufficiently small, so part (i) can in fact be defined on C'(.X).

() is called the generator of S(¢) and S(t) is the semigroup generated by (2. Given an initial distribution 1 we
say that the stochastic process (7;) whose distribution at time ¢ is given by p.S(t) is governed by €). We define
stationarity and ergodicity of the process (7).

Definition 9. A stochastic process (7;) on X is said to be stationary if the joint distributions of

(77t1+t, ey Utn+t)

are independent of ¢ for all choices of n and 4, ..., ¢,.
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Definition 10. We call a stationary stochastic process (1) ergodic if P(G)) € {0, 1} for every event GG in path
space which is invariant under time shifts, i.e. satisfies 7. € G = n,,. € G forall s > 0.

The following result holds in the compact case. It appaears as theorem B52 in the section “Background and
Tools” of [21]].
Theorem 5. Suppose that (7, ) is a stationary Markov process whose distribution at each fixed time is the measure

it € Z. Then each of the following is equivalent to the ergodicity of the process.
i) p € Z..
(ii) limy o0 L fi EF(10)G(15) ds = [ Fdy [ G dy for all bounded continuous functions F, G.

3. Interacting Particle systems

The processes we discuss are stochastic processes (7);) on the compact configuration space {0, 1}5 , where S is
a countable set. The infinitesimal generator governing (1), which we denote by (), is the closure in C'({0, 1}*)
of the operator {2 which takes the following form when applied to cylinder functions (i.e. functions depending on

a finite set of coordinates)

Qf(n) =Y _ e, QL) — f(n)] @)
¢

where the transition rates from 7 to ¢, ¢(1), (), are chosen such that § satisfies R(I — \Q2) = C({0,1}%) for
sufficiently small A > 0. We remark that €2 is clearly a closed Markov pregenerator as the closure of the Markov
pregenerator () by Lemma £ - the fact that ) is a Markov pregenerator follows from the Stone-Weierstrass theorem

and Lemma [l

4. Examples

We define the important models in the field. The following notation is needed in order to describe the transitions.

For a configuration 7 € {0, 1}* we define for each z,y € .S the functions 7,, N2y € {0, 1}5 as

1—n(a) ifa==z

ne(a) = (8)
n(a) ifa#x
and
nly) ifa=uz
Ney(a) = Qn(z) ifa=y (9)

n(a) ifa#z,y
We note that all the infinitesimal generators in this section are well defined by Section III in chapter I in Liggett

([23D).

4.1. The contact process. The contact process 7); with contact rate A > 0 and recovery rate 1 on a bounded
degree graph S is governed by the generator 2 which is the closure in C'({0, 1}%) of the operator €2 which takes

the following form when applied to cylinder functions

Qf(n) = () + As(n, 2)(1 = n@)][f(n=) = f(0)] (10)

TE€S
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where s(n, ) = >, n(y) (we use the notation y ~ x to mean that y and z are connected by an edge). We
interpret sites with 77(z) = 1 as infected and sites with 77(x) = 0 as healthy. Let d, denote the pointmass on the
configuration 17 = 0 which by Theorem [ is stationary. The next theorem can be found in Part I of Liggett ([21]).

L 2) 5o that

Theorem 6. For S = Z¢, the d-dimensional integer lattice, there exists a critical value \(d) € (53752

(i) A < A(d) implies that Z = {4y} and 7, — o weakly as t — oo for any initial configuration 7y and

(i) A > A(d) implies that Z, = {d¢, v} for some v # §y and 7, — v weakly for any initial configuration 7y

with infinitely many infected sites.

Note that for S = Z, A\ = A(1) and 19 = 1 by Theorem B, 1; — &, weakly. However we also have the
following result, which appears in Theorem 3.10 of chapter VI of Liggett ([23]):
Theorem 7. For S = Z, A = A\(1) and 19 = 1 the following holds:

(i) For each z, lim;_,, P (1;(2) = 1) = oo and furthermore
(ii)) P (Vs > 03t > ssuch that n(x) = 1) = 1.

The next theorem can be found in Part I of Liggett ([21]).

Theorem 8. For S = T, (d > 2), the tree in which every vertex has d + 1 neighbours, there are two critical values

A(d) < Aa(d), ﬁ <A (d) < d—il and ﬁ& < Ao(d) < \/&171 so that

(i) A < A1(d) implies that Z = {d} and 7, — o weakly for any initial configuration 7 and
(i) Ai(d) < A < Ao(d) implies that Z, is infinite and

(iii) A > A2(d) implies that Z, = {dy, v} for some v # &y and 1, — v weakly for any initial configuration 7

with infinitely many infected sites.

In case (ii), if the initial configuration 7y has finitely many infected sites then
P (n, Z0Vt > 0) >0
butVx € S
P (3N so that g (x) =0Vt > N) = 1.

4.2. The linear voter model. Here S is an arbitrary countable set and p(z,y) for x,y € S satisfy p(z,y) > 0
and ), _¢p(z,y) = 1forallz € S. The generator Q of the linear model process 7); is the closure in C'({0, 1}%)

of €2 which when applied to cylinder functions takes the form

Qf(m) = sm.2)[f(n:) — F()] (11)

€S

with s(n,2) = > s p(x,y)|n(y) — n(x)|. The interpretation is that each site has two opinions, 0 and 1, and
changes its opinion at a rate which is the weighted average of its neighbours which have a differing opinion.
An alternative interpretation is in terms of spatial conflict. Two nations control the areas {x : n(z) = 0} and
{z : n(x) = 1} respectively and a change of value at a point x represents an expansion of one nation’s area at

the expense of the other nation. The trivial stationary distributions (satisfying Theorem [) are the the pointmasses
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dp and 0; on n = 0 and 17 = 1 respectively. Let p(”) (x,y) be the n-step transition probabilities associated with

p(z,y) defined recursively via the equations

P (z,z) =1
pM(z,y) = p(z,y)
P y) = p" (@, 2)p(z,y).

zeS

Now let X (¢) and Y (¢) be independent copies of the continuous time Markov chain (i.e. continuous time random

walks on S) with transition probabilities

n

et
pr.y) =D —p"(ay)

n=1

and let Z(t) = X(t) — Y (t). We restrict ourselves to the case S = Z% and p(z,y) = p(0,y — z) for each
z,y € S. In addition we assume that the Markov chain on S with transition rates p(x, y) is irreducible (i.e. for
each v # y € S there exists a k(x,y) > 0 such that p*(@¥)(z; ) > 0). If Z(t) is recurrent then we have the
following result, which appears as Theorem 3 on page 22 in Liggett’s lectures ([22]).

Theorem 9. (i) Foreachn € {0,1}" and every x,y € S,

Jim P () 7 mi(y)) = 0.

(11) Ie = {60751}-

(iii) If p satisfies u{n : n(x) = 1} = A forall x € S then pS(t) converges weakly to \d; + (1 — X)do.

For 0 < « < 1 define v, to be the homogeneous product measure on {0, 1}5 with density q, i.e.
Vo{n:n=1on A} = oM (12)

for each finite set A C S.
Definition 11. We call a set A C {0, 1}%" shift invariant if for all z € Z% and for all ((i));cze € A =
(i + 2))iczs € A. We define A+ z = {((i + 2))iczs : (0(i))icze € A},
Definition 12. We call a probability measure translation invariant if, for any event A and any a € Z¢ , it assigns
the same probability to A and A + a.
Definition 13. A translation invariant probability measure on {0, l}Zd is said to be spatially ergodic if it assigns
probability 0 or 1 to every shift invariant subset of {0, 1}%",

If Z(t) is transient then the following result appears in Theorem 5 on page 25 in Liggett’s lectures ([22]).
Theorem 10. Fix 0 < o < 1 and let 9 ~ v, then

(i) v4S(t) converges weakly to ji, ast — oo.
(ii) puq is translation invariant and spatially ergodic.
(iii) pa{n:n(x) =1} = a foreach x € S and

(iv) Cov,,, [n(z),n(y)] = a(l — a)P?O===Y(Z(t) = 0 for some t > 0).
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In addition we also have this result in the transient case, which is Theorem 6 on page 26 in Liggett’s lectures

([221):
Theorem 11. (i) Z is the closed convex hull of {11, : 0 < o < 1}.

() Ze = {pa : 0 < < 1},

4.3. The exclusion process. Here S is an arbitrary countable set and the transition rates p(x,y) for z,y € S
satisfy p(z,y) > 0, p(z,z) = Oand ) _¢p(z,y) = 1forallz € Sand sup,cq ), sp(x,y) < co. The
generator () of the exclusion process 7, is the closure in C'({0,1}*) of the operator {2 which when applied to

cylinder functions takes the form

Qf(n) = pla,y)n() (1 = n@)[f (ey) — f(0)]- (13)

€S

The invariant measures for the exclusion process are closely related to the bounded harmonic functions for p(x, y).

Let

H = {Oé : S —10,1] : Zp(a:,y)a(y) =a(x)Vr € S} (14)

yeSs

denote the set of harmonic functions with respect to p(x, y) taking values between 0 and 1 and let p;(x, y) be as

defined in Section §4.2. For o € H let v, be the product measure on {0, 1}5 with marginals given by

vafn : n(z) =1} = a(z). (15)

The following result, which appears as Theorem 1 on page 40 of Liggett’s lectures ([22]) shows the product mea-
sures are stationary in some simple instances.

Theorem 12. (i) If p(+,-) is doubly stochastic, i.e.

D plzy)=1vyes

€S

then v, € 7 for all constants 0 < o < 1.

(ii) If 7 is a non-negative function on S and p(+, -) is reversible with respect to T, i.e.

m(z)p(x,y) = 7(y)p(y, v) Yo,y € S

then v, € Z where

a(z) = %Vm es.

The proofs of the next two results can be found in chapter VIII of Liggett ([23]). The next result holds under
the assumption that S = Z? and the Markov chain on .S with transition rates p(z, ) is irreducible and the rates
satisfy p(z,y) = p(0,y — x) = p(y, x) foreach z,y € S.

Theorem 13. (i) Z. = {v, : constant 0 < o < 1}

(ii) If p is translation invariant and spatially ergodic, then .S(t) converges weakly to v, as t — oo where
p=pfn:n(0) =1}
The following result holds if the Markov chain on S with transition probabilities p(x,y) is irreducible and

symmetric (i.e. p(z,y) = p(y, x) forall x,y € S).
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Theorem 14. (i) For each o € H, v, S(t) converges weakly to a measure fi,.
(i) paf{n:n(x) =1} = a(z) forall z € S and

tain :n(z) = 1,n(y) = 1} < a(z)a(y)

forallx #y € S.
(iii) puq is a product measure if and only if «v is a constant.
(iv) Z. = {pta : @« € H}.

(v) If the probability measure z on {0, 1} satisfies

Jim > oz y)edn :nly) =1} = a(x)

yes
for every x € S and
Jlim pe(@1, y1)pe(w2, y2)pdn - (1) = 1,n(y2) = 1} = a(z1)a(zs)
y1,y2E€S

for every 1,9 € S then o € H and 115 (t) converges weakly to fi,, as t — oo.

4.3.1. The tagged particle process on Z%. Let X, denote the position of a tagged particle at time ¢ and let 75, be
the process governed by the exclusion process. Let & () = 1;(X; + x) be the process viewed from the particle.
For a configuration ¢ € {0,1}%" N {¢ : £(0) = 1} we define the spacial shift via

1 ifa=0
§(a) =40 ifa=—x (16)
Ela+z) ifa# —x,0

We assume the transition rates p(x,y) are translation invariant and finite range (i.e. p(x,y) = 0 whenever the
distance between  and y is larger than some positive constant) and the Markov chain on Z¢ with transition
rates p(z,y) is irreducible. The tagged particle process ; is governed by the generator Q which is the closure
in C'({0, 1} N {¢ : £(0) = 1}) of Q which takes the following form when applied to cylinder functions

Qf<§> = Qe:cf(f) + Qshf(§)7 (17)
where €2, and (), are given by
Qo f(©) = D pla,y)é@) (1 = W) (Goy) — FO)] (18)
2,y€Z\ {0}
Qaf€) = D p0,2)(1—E@)[f(7:6) — F(&)] (19)
274\ {0}

The notation sh and ex corresponds to shifts and exchanges respectively. We note that Landim et al. and Ferrari
studied the tagged particle process on Z ([19],[9]). In Landim’s model all the untagged particles perform nearest
neighbour symmetric jumps while the tagged particle performs asymmetric nearest neighbour jumps. Ferrari stud-
ied the tagged particle process for translation invariant asymmetric nearest neighbour jumps. For each probability
measure  on {0, 1} let 7 = v{-|£(0) = 1}. The following result was proven by Liggett ([21]) for the non-
nearest neighbour case in Z. We also prove it for our model, in which S = Z and p(0, 1) = p(0,2) = p(0,—1) =
p(0,—2) =1/4and p(z,z + 1) =1/2forz # 0,—1and p(x,x — 1) = 1/2 forx # 0, 1.
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Theorem 15. For each constant 0 < « < 1, The process (&;) started from 77, is stationary and ergodic in the sense
of Def. [LQ for the tagged particle process.

For the nearest neighbour symmetric case in Z (i.e. S = Z and p(z,z — 1) = p(x,z + 1) = 1/2 for each
x € S) the following result was proven by Arratia ([3]).

Theorem 16. For each initial distribution 7, (0 < a < 1), t§(—55 converges in distribution to a Gaussian random
variable with variance /2/7(1 — a)/a.

The following result was proven for a number of different settings, which include for Z the symmetric non-
nearest neighbour case ([[15],[21]) and the non-symmetric nearest neighbour case on Z ([[14]). The result also
holds for our model.

Theorem 17. For each initial distribution 7, (0 < o < 1), %t(xt) converges in distribution to a zero mean
Gaussian random variable with non-zero variance.

As pointed out by Liggett ([21]), Theorem [17 follows from the following technical condition, which does not
hold in the one dimensional nearest-neighbour case. Before we state the condition we need a few definitions. We
define the drift /(&) = Y., o p(0,z)z(1 — £(z)) for each & € {0,1}° N {¢ : £(0) = 1} and the centered
drift via ) = ¢ — [ (&) dva(€). In addition, we define the Dirichlet form for each measurable function a on
{0,1}2" N {€ : £(0) = 1} as D(a) = D.y(a) + Dy, (a), where

D) =5 [ Y pO0)(al(ne) - al€)P(1 - () i)

zeZ4\{0}

Dex(a) = i Z p(gj’ y)(u(fx7y) _ U(f))2 dV_a(g)
z,yeZN\{0}
=3[ T pena) - a©) @)~ £0) (o)
z,y€Z4\{0}

The technical condition is as follows:

' [vi@nte 7| < ¢v/Dat 0)

holds for all cylinder functions u for some positive C' > 0. This condition is a tightening of part of condition H_

which we define below.

Definition 14. We say that condition H_; holds if the following two inequalities

' JEGIG du—a@)‘ N @1

[uo@u©ame)| < ey @)
hold for all cylinder functions u, for all A\ > 0 and for some positive C' > 0, where u, is defined via the equation
)\U)\ — ﬁu A= E

Liggett proves that condition /_; ensures that the limit in Theorem [L7 is a (possibly degenerate) Gaussian
random variable: We define E(a) for each measurable function a on {0, 1}%* N {¢ : £(0) = 1} as follows:

Ba-3l; X [e+ang -a@ra-doame

xe{£l,+£2}

+ 2Dex(a)] .
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Our variant of condition (20) is the following condition:

‘ JEGIG du—a@)' < OVEW) 23

holds for all cylinder functions u, where C' is some positive multiple of /(1 — «) which does not depend on c.

We also prove that condition //_; holds in our model.

5. Main result

Fora fixed 0 < a < 1 let v, be the product measure on Z with constant marginals «, let 7, = v, {:|{(0) = 1}
and let ¢ denote an element of {0, 1}%. Let C denote the real-valued functions on {0,1}* N {£ : £(0) = 1}
which depend on a finite set of coordinates and let C'({0, 1} N {¢ : £(0) = 1}) denote the space of continuous
real-valued functions on {0, 1}%2 N {£ : £(0) = 1}. Foreach & € {0, 1}2 N {¢: £(0) = 1} we define

ly) ifa==x
Euyla) = E(x) ifa=y (24)
&(a) otherwise
and
0 ifa=—x
(7€) (a) = ¢ 1 ifa=0 (25)

&(a+z) otherwise
We define for each a € C, La = Lg,a + Lea (sh and ex stand for the shift and exchange portions of L respec-

tively), where

(Laa)©) = 32 (aln€) — al€)(1 — €))
xe{+1,+2}
(L) (@) = 5 3 (@Ersin) — al)E(x) (1~ £z +1)
z#0,—1
5 2 (al6e) — al€)EE)1 — €@ — 1)
z#0,1

By the Stone-Weierstrass theorem and Lemmas [l and P, the closures of L and L., in C ({0, 1}2N{¢ : £(0) = 1}),
which by abuse of notation we also denote by L and L, respectively, are Markov pregenerators. We note that we
can define Lg,a foralla € C({0,1}* N {¢ : £(0) = 1}) since it is a bounded operator. Similarly, the extension
of Ly to C({0,1}* N {& : £(0) = 1}), which we also denote by Ly, is also a Markov pregenerator and in fact
is a Markov generator by Lemma [J since it is bounded.

In order to prove that L is a Markov generator we need the following definition and two results from Gustafson
and Liggett ([112], Theorem 2 and [20], Theorem 2.2). The connection of Markov generators to Theorem @ was
pointed out by Ferrari ([3]).

Definition 15. We call a bounded operator A on a Banach space X dissipative if it satisfies || f — AAf|| > || f]|
forall A > Oand f € X.

Theorem 18. (Gustafson’s perturbation Theorem) Let A be the infinitesimal generator of a contraction semigroup
on the Banach space X and let B be a bounded dissipative operator on X . Then A+ B is the infinitisemal generator

of a contraction semigroup on X.
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Theorem 19. Let A be a (possibly unbounded) operator on a Banach space X that takes the form A = Zflo:l M, U,,
where M, and U, are a sequence of bounded operators and for each n the finite sum A = )" | M, U, is dissipa-
tive. Let /1, be positive numbers which satisfy || M, || < p, andletC; = {f € X : > 7 ||Unf||ptn < 00}. If

C; is dense in X and there exists a positive /N such that for all n

> my (U, Un) < N (26)
k=1
and
> 1wel[Uk, Myl < Ny, 27)
k=1
where [B,C] = BC —CBand (B, C) = sup; %, then R(I —AA) = X for A\ > 0 sufficiently small

(recall that R is used to denote the range of the operator).

Lemma 5. L, is bounded on C'({0, 1}* N {¢ : £(0) = 1}) and dissipative.

Proof. The proof follows the proof of Lemma 3.1 in [20]. The boundedness is clear. To prove dissipativity, for
f e C({0, 1} N {¢ : £(0) = 1}), by compactness there exists an £ such that either f(£) = max{f(£) : £ €

{0,1320{€ : £(0) = 1}} = [ flloc 0r (= f) (&) = max{(—=£)(&) : € € {0, 1}"N{€ : £(0) = 1}} = [[(= )l

holds. We’ll prove the result for the first case (the second case is similar and thus omitted). Let A > 0.

Lf = ALsnflloo Zf (&) = A(Lsn f)(E)

—HO+ Y (O - [ &)
re{+1,+2}
> (€)= Il e

Lemma6. A = L., satisfies the conditions of Theorem [L9 with respect to the Banach space X = C'({0, 1}*N{¢ :

£(0) = 1}).

Proof. The proof follows the proofs of Lemmas 3.1 and 3.6 and Theorem 3.7 in [20]. First note that, for all bounded
operators B and C' on X, the following inequalities hold: ||[B, C]|| < 2||B||||C|| and v(B,C) < ||B|| + ||C||-
We define

(Ua,bf) (5) = f(ga,b) - f(f)
(Mo )(©) = S f Q1 ~ ).

Thus, L., = 2#0771 Mg oi1Ugai1 + Zaﬂ]’l M, 4-1Uq q—1. The proof of the dissipativity of the finite sums
is the same as the proof of Lemma [. |[M, ;|| < 3 so we can set 1., = 1 and also ||Uy || < 2. In order to
prove the density of C;, we note that C C C; and C is dense in C({0,1}* N {¢ : £(0) = 1}) by the Stone-
Weierstrass theorem. If {a, b} N {c,d} = 0, then U, and U, 4 commute and also U, and M. 4 commute, so
Y(Uap,Ucq) = 0 and ||[U,p, M. q]|| = 0. We prove the boundedness of the sum in (26) for U, .11, a # 0, —1
(the case U, 41, a # 0,1 is similar). Since U, 441 trivially commutes with itself and since ¥(U,p, U.q) = 0
whenever {a,b} N {c,d} = (), the sum only contains at most two terms: 37(Uy,_1,q, Uy a+1) (Whenever a # 1)

and %’Y(Ua+1,a+2, Ui a+1) (Whenever a # —2), and thus since Y(U,p, Ucg) < [|Uap|| + [|Ucal| < 4, the sum
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is bounded by 4. We now prove the boundedness of the sum (27) for M,.a+1, a # 0,—1 (the case M, .1,
a # 0,1 is similar). In this case, the sum contains at most three terms: 3 ||[Us_1,q, Mg, q11]|| (Whenever a #
1), %H[Ua,a+1>Ma,a+l]H and %H[UQH,QH,MMH]H (whenever a # —2), and thus, since ||[Uqp, Mc4]|| <
2/|Uapl|||Mca|| < 2, the sum is at most 6, so we can set N = 4. O

We conclude from Lemmas [ and [ and Theorem [1§ that
Lemma 7. L is a Markov generator of a contraction semigroup on C'({0, 1}* N {¢ : £(0) = 1}).

Let Cs denote the subset of functions in C'((Z x {0,1}%) N {¢ : £(0) = 1}) which depend on z and a finite
number of coordinates of {. For each a € Cy we define Lya = L ,a + Ly spa, where Ly ,a and Ly 5,a are

given by

(Dra) (0, 8) = 5 7 (@l o) = ol )61~ Ely + 1)
y7#0,—1
45 3 (1) — ale ) — €y — 1)
y#0,1
()@ =7 3 (ale+1,78) —alz, )1 ~ W)
ye{£1,£2}

Before stating the version of Lemma [ for L, we recall the locally compact version of the Stone-Weierstrass
theorem, which can be found in [6].
Theorem 20. Let X be a locally-compact Hausdorff space and let C'(X') denote the real-valued continuous func-
tions on X which vanish at infinity. A subalgebra A of C'(X) is said to vanish nowhere if for all z € X there
exists a @ € A such that a(x) # 0. and is said to separate points if for every two different points z,y € X there
exists a function a € A such that a(z) # a(y). Then A is dense in C'(x) with respect to the supremum norm if
and only if it separates points and vanishes nowhere.

Once more, we let L;, Ly ., and L, 4, denote, by abuse of notation, the closures of L, L; ., and L; g, in
C((Z x {0,1}%) N {& : £(0) = 1}) respectively.
Lemma 8. L, is a Markov generator on C'((Z x {0,1}*) N {¢: £(0) = 1}).

Proof. The proof that L is a generator is similar to the proof for L. The proof that L, y, is dissipative and
bounded is the same as Lemma [ and the proof of Lemma [f for L, ¢, is almost the same with a small difference
in proving the density of C;. In this case C; C Cy, and Cs is dense in C'((Z x {0,1}*) N {¢ : £(0) = 1})
by the locally compact version of the Stone-Weierstrass theorem which can be verified by observing the family
of functions a,(x,§) = $2—1+15 (b) and a(x,&) = 12;“ We also note that the verification that L, ., is a Markov
pregenerator is slightly different. To verify condition (i), we take a sequence of functions which depend only on
z, fo(x,&) = fu(x)such that 0 < f,(x) < 1forall z, f,(x) = 1 whenever || < n and f,(x) — 0 as
|z] — oo and note that clearly L ., f,, = O for all n. To show condition (iii) for L, .., we note that since for
each f € Cyand A > 0, f — ALy, [ vanishes at infinity, we have inf{; ¢).¢(x)=13(f — AL1,eaf)(2,§) <0,
so if f only takes non-negative values then, since f vanishes at infinity, inf{(; ¢).c(2)=1} f(2,§) = 0, so in this
case inf{(y ¢).@)=131(f — Moo f)(2,§) < infiae)e@)=1} [(x,§). If f takes a negative value a, then since
A = {(x,€) : |f(x,&)] > la|} is compact, f attains a minimum on A at some (2", £") which is a global
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minimum. Thus,

P €)= MEnee§)@€) = 12 €) 4+ 25 37 (F€) = F& €))L — £y +1)

y#0,—1
25 3 (€)= 1. €8, DEW)( - 6y~ 1)
y#0,1

0 ¢0\ __ i
S f($ 75 ) - {(x,{):?(fac):l} f(‘raf)

so in this case we also have infy(, ¢).¢(2)=13 (f — AL1eof)(2, &) < infy(ze)e(a)=1) f(2, ) which completes the

proof of condition (iii). [l

We note that the verification that L, s, is a Markov pregenerator is similar to L, ., and thus, since it is bounded,
by Lemma [ it is also a Markov generator.

Let & be the process governed by L with initial configuration distributed according to 7, and let X; denote the
position of the tagged particle. Our main result is the following:

Theorem 1. The position of the tagged particle, X, satisfies X/ Vit converges in distribution to a normal random
variable with non-zero variance and zero mean.

Our proof is similar to Liggett’s proof of Theorem 4.55 in section 4 in part III of Liggett ([21]). To follow
this strategy we need to show that L and L, are generators (which we’ve already done), that &; is stationary and
ergodic, that condition H_; (inequalities (1)) and (22)) is satisfied and to prove that condition P3, our variant
of condition (R0), is satisfied (condition (R0) is not satisfied in our model which can be verified by choosing the
function u(£) = Y"1 (1 — =2)E(i) since De, (u) is of order L while [ yu dr, is of constant order).

Definition 16. A probability measure ;1 € P is said to be reversible for the process with semigroup S(t) if
[ 1tgdu= [ 9strrau
holds for all f,g € C'(X)andallt > 0.

By plugging in g = 1 or a sequence g,, /! 1 and writing f = max{ f, 0} —max{— f, 0} and applying monotone
convergence, we conclude that a reversible measure is also stationary.
Lemma 9. &, is stationary and L satisfies [ (Lf)gdv, = [ f(Lg) dv, forall f,g € C.

Proof. We note that &, is stationary if 7/, is stationary, since a Markov process starting from a stationary distribution
is stationary. By Proposition 5.3 in chapter 2 in Liggett ([23]) the measure 7 is reversible iff | (L f ) (&)g(&) drg(€)
[ 7€) (Lg) (&) dv5 (&) holds for all f, g € C, which we shall prove by using the following two equalities

/ F(Ean)g(E)E() (1 — £(y) dTa(€) = / F(E)g(Enn)E () (1 — E()) dTa(é)
/ FnE)g(€)(1 — £(x)) dral€) = / F(E)g(r) (1 — E(—2)) da(€)

which follow from the fact that the mapping § — &, is 7, measure preserving and the mapping { — 7,§
sends the measure (1 — &(x)) dvg(§) to (1 — £(—x)) dUg(€). We show that 77, is reversible for the processes
generated by L, and L., i.e. Ly, and L, satlsfy for all f, g € C the equalities f( shf) (&)g(&) drg (&) =

[ f( ( Shg) (€) dvg (€) and f( e.z’f) (€)g(€) = [f(¢ ( exg) (&) dvg(€) respectively. We start with
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the proof for Ly,

[ (Lan)©() da)
1 T rmose - e e

we{+1,£2}

- / S HE9E)1 — (@) dra(é)

re{+1,+2}

Applying the mapping £ — 7,£ yields:

1Y rmosen - o) ane)

ze{+1,4+2}

—1 X 10 - g0

re{+1,+2}

By changing the summation variable x — —x we obtain:

1Y rmosen - o) ane)

ze{+1,+2}
—1] X 1m0 - g e
re{+1,+2}
Thus, we obtain:
/ (Lanf) (€)9(€) d7(€)
—1 ] X 1@emon - g e
ze{+1,+2}
1 _
- / S FO9O( — E())) dma(€)
ze{+1,+2}
_ / (L) (€)£(6) d7a (€)
We now prove f(Lexf)(f)g(f) dva(§) = ff(f)(Lexg)(S) v (£).
/ (Lo ) (€)g(&) dTa(€)
5 | X Heagl 61~ €+ 1) i)
z#0,—1
- / S FO9(O) (1~ £ + 1) dvalé)
x#0,—1

45 [ X Hea a1 - €z - ) i)

z#0,1

5 [ X 1001 - € - ) (e

17
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By applying the 7, measure preserving change of variable { — &, ,41:

3| X Hewna @)1 = €+ 1) (e

z#0,—1

5 | X 10l + 11 - o) )

x#0,—1
Similarly, by applying the change of variable { — &, ,—1:

5 | 2 Heaa©6@(1 ~ €l - ) i)

x#0,1

=5 | 3 HOslumi)éle - D1 - (o) dra(©

z#0,1

By changing the summation variable x — x — 1:

- / S FO9OE@)(1 - £l + 1)) dra(€)

- / S A9l — 1)(1 — &(x)) dra(€)

Thus, plugging in all the expressions we obtained yields:

/ (Leaf) (€)9(6) d7a(€)
5 [ 3 £@s(itels + 11 - o) dra©)

z#0,—1

-5 | X #@s©)ste - D1 - ela) dra(e

z#0,1

5 [ X HO0lean6le ~ 11 - (o) i)

x#0,1

- / S HO9OE( + 1)1~ E(x)) dTa(€)

completing the proof. 0

By Lemma E the measure 7/, is stationary for the processes with Markov generators L, L., and L. Thus, by
Proposition 4.1 in chapter IV in [23], the extension of S(t), the Markov semigroup generated by L, to £?(75) =

{f:{0,132N{¢:£0) =1} = R : [ f2dv; < oo}, which we denote by S(t), is a Markov contraction

S(t)a—a

semigroup and the generator associated with S (), defined for each a in a dense subset of £2(77;) as limy g ;
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(here the limit is taken in £2(77)) is the closure in £2(v,) of L (note that the generator associated with S(t) is
trivially an extension of L, since a series that converges with respect to the supremum norm also converges in
£2(l/a) to the same limit). Similarly we extend L., and L, to Ez(y_a). By abuse of notation we now use L, L.,
L, S(t), D(L) and D(L,,) to denote the extended generators, semigroup and domains respectively (we note
that D(Lgy) = L*(Va)). Thus, La = lim,g & for each a belonging to D(L), a dense subset of £?(77,,).
Recall that we originally constructed L as an operator on C'(.X) as the closure of its values on C, so we obtain that
C is a core of L in the following sense.

Definition 17. Suppose §) is a Markov generator. A linear subspace D of D(2) is called a core for € if € is the
closure of its restriction to .

Lemma 10. [ (Lf)gdv, = [ f(Lg) dvg holds forall f,g € D(L).

Proof. Let f,g € D(L). By the core property of C we can find f,,, g, € C suchthat f,, — f, Lf, — Lf, g, — g
and Lg, — Lg, where the sequences convergence in £?(7). By applying the Cauchy-Schwartz inequality we

obtain:

@i~ [ (ws)o

< ‘ [wngar— [(wr)9am +‘ [wsgar — [ (Lh)o.im

<(fr-wnpam) " (feam) " (fo-oram)(fonrem) o

asn — oo and thus f(Lf)g dv, = lim,, o0 f( )gn dv, and smnlarlyf(Lg)f dvg, = lim,,_, o f(Lgn)fn dU,.
By Lemmaf, forall n, [ (Lf,)gn dVa = | fu(Lgn) dvg holds and thus

/(Lf)gdz: lim /(Lfn)gndy_a

n—00

= hm/fn Lgn) vy

~ [ f(Lg)am n
Similarly we obtain

Lemma 11. f(Lexf)g dve = [ f(Lemg) d holds for all f, g € D(Le,).
and
Lemma 12. [ (L, f)gdvs = [ f(Lsng) dvg holds forall f, g € L2(75).
Let D(a) be the Dirichlet form of a measurable function a given by D(a) = Dgj(a) + D,y (a), where

1
g-1 Y / (7€) — a(€))2(1 — &(x)) dTa(€)

zE{:tl +2}

Z/ (Eus1) — al©)E () (1 — & + 1)) dva(€)

:1:7&0 -1
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We also define E(a) as follows:

=37 X [erang - a©ra- g e

xe{£1,+2}
+ 2Dew(a)]

We note that the following two lemmas are somewhat analogous to integration by parts, since if we replace the
generators by the second derivative and use a to denote continuous real-valued functions, then the right hand side
is of the form — [ a”(s)a(s) ds and the left hand side is of the form [ (a'(s))? ds.

Lemma 13. Dy, (a) = f( Lgpa)(§)a(€) dvg(€) foralla € C.

Proof. By plugging in L,a into the integral we obtain:
[ (- Laa) ©ate) ara(c)
—1 X @ - anea©) - @) o)

xe{+1,+2}

By writing a(§) = a(§) — a(7.€) + a(7,.£) we obtain
[ (~Laa) ©a(e) ar(6)
/ SO (@) - a(m)2(1 - £(x))) dra(€)

we{+1,42}
t1[ T @ - amamen - &) o
xe{+l,+2}

By applying the maping & — 7,.&:

T @@ - atneetne - ) are

re{+1,+2}
—1 ] X (@) - al€)a©)1 - €(-a)) (e
xe{£1,+2}
By the change of summation variable z — —x:

T e - atneetne - ) dre

xe{+1,+2}

—1] X @nd - a@)a©) - @) (o)

xe{£1,+£2}

—1 [ X @ ame)a©) - ) (o)

we{+1,4+2}

Thus,

[ Laa)@ate) i)
—1] X @O -amora - i)

xe{+1,+2}

- [(-Laa) @l ar(e)



POSITIVE SPEED OF TAGGED PARTICLE WITH =1, 2 JUMPS

Rearranging the terms yields:

/ (~Lana) (€)a(€) d7a(€)
—5] X (@ng - a©Pa - o))

ze{+1,+2}

= Dsh( )
Lemma 14. D, (a) = [(—Le,a)(&)a() dvg(€) foralla € C.

Proof. Plugging in L.,a into the integral yields:

/ (~Lesa) (€)al€) dra(€)
—5 [ 3 (09 ~ al€ear)alO6(a) 1~ ¢+ 1)) (e

x#0,—1

5 [ X (@) = alen))a(©)€@) (1 - €l — 1)) da(€)

z#0,1

We write (&) = a(§) — a(€y24+1) + a(&4241) to obtain:

3 [ X (@) — alaia(@le)1 — ela+ 1) (e

#0,—1

/Z €) — alCanin) PEE)(1 — £l + 1)) d7(E)
z#0,—1

5[ 3 000 — aeurale e — el + 1) dr(e)
x#0,—1

By the change of variable { — &, ;41:

/ S (@€) — albrwr))alrasn)E(@)(1 — E(a + 1)) d7a(€)

x#0,—1
5 | X @) — al€)a©(a + (1~ €()) da(€)
z#0,—1

By changing the summation variable x — = — 1 and noting that §,_; , = &, ,—1 we obtain:

3 [ 2 @O — el ol @)1~ glo -+ 1)) d(6)
z#0,—1
5 [ X (@) ~ a@)a©()1 - €lz - V) ()

x#0,1
:__/ > (@(€) = alEee 1) a(©E@)(1 — & — 1)) v (€)
z#0,1
And thus

5[ 3 00 — e )o@ — ela+ 1)) (e

x#0,—1

/Z ) = alEesn) (@)1 — Elw + 1)) dTa(6)

z#0,—1

=5 [ T a(©) - al€a el @)1 - o~ 1)) da(€)

x#0,1

21
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Rearranging the terms yields:
[ (L) (©a(6) dmate)
5 [ X (@) = ) P~ o+ 1)) ()

r7#0,—1
Applying the change of variable § — ¢, ;41 yields:

3 [ 2 (@0 — alwn) Pela)(1 o+ 1) (e

x#0,—1

5 [ 3 (@larn) - a©)Few + D1 - €()) da(6)

x#0,—1

/ Z _agm:r 1 g(l’)(l—g(l’—l))dlj_a(é)

z#£0,1
Thus:

[ (L) ©ate) ()
/Z ) — a(6ra)6(a) (1~ €lx - 1)) da(€)

z#0,1
D (alé) = albrarn))?E(x)(1 = E(z + 1)) dTa(§)
x#0,—1
= Deac( ) U

We are now ready to prove the following result.
Lemma 15. D(a) = [(—La)(£)a(€) dvg(€) forall a € D(L).

Proof. By Lemmas [13 and [14, we obtain that D(a) = [(—La)(£)a(§) dva(€) for all a € C. Let D(a, b) be
defined as

Dla —%{- > [ (alrg) - al€) b - HeN - ¢ i)

re{+1,+2}

23 Y @) — o) Ol6wnn) — MO — (o + 1)) (e

x;éO -1

. Z / (Ener) — a(€))(b(Erar) — BENE)(1 — E(x — 1)) da(E)

so that D(a, a) = D(a). We define R(a) = [(—La)(§)a(€) dvg(€). The proof follows the proof in chapter IV
of Liggett ([23], proposition 4.1 (page 205)). Recall that a convergent sequence in £2(7/,) has a pointwise almost
everywhere convergent subsequence, and thus, by the core property of C, we conclude that for each a € D(L) we
can find a sequence a,, of elements in C such that a,, — a pointwise almost everywhere and in £ (%), and La,, —
La in £L?(77;). Thus, by Fatou’s lemma, D(a) < liminf,, .., D(a,), and by Lemma L4, R(a) = lim,, ., R(a,)
and (by Cauchy-Schwartz) R(a) < oo. Since R(a,) = D(a,) we conclude that D(a) < R(a), and in particular,
D(a — a,) < R(a — a,) and D(a) < co. By the Cauchy-Schwartz inequality,

(Rla— ) < / (~L(a — a,))*(€) dv(€) / (a— an)2(€) dTa(€) = 0
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asn — oo. Thus, D(a — a,) — 0 as n — oo. Therefore, by plugging in a« = a — a,, + a, into D(a) and

opening the squared terms, we obtain:
D(a) = D(a — a,) + D(a,) + 2D(a — ay, ay).

Thus, applying once again Cauchy-Schwartz:

D(a — ap,a,) < v/D(a — a,)\/D(a,) — 0
as n — oo and thus D(a) = lim,,_,~ D(a,) = lim,_,o R(a,) = R(a). O

Similarly we obtain the following results.
Lemma 16. D, (a) = [(—Le,a)(&)a(§) dvg(€) forall a € D(Le,).
Lemma 17. Dy, (a) = [(—Lga)(&)a(§) dva(§) forall a € L2(7).
Lemma 18. For all f € C we have [(f(¢) — f(§-11))*dva(€) < Cmin{E(f), D(f)} and thus for all f €
D(L) we have [(f(€) — (£ 1)) d7a(€) < D).

Proof. Note that if we perform the following 5 steps whenever £(—1) = 0 and {(1) = 1 we can move from £ to
§—1,1 (in the image the orange circle denotes the tagged particle, the black circle a different particle and a white

circle a position which is particle free).
§=2¢ °
&1 =1-1&0 °
&2 = (&1)12
§3 =18 .
&= (&3)-1,-2

& =T1-1&

o O

If we write

+ f(&) = (&)

+ (&) — f(&) —2
+ (&) — f(&)

+ f(&a) = f(§-11) + 1

and apply the inequality (37, a;)> < 537, a? we obtain:
J1© - feanren - e-v)am(e)
<5 [ (1) = 1) + 1201~ €(-1) i)
+5 [(f6) — F(€0)1) P~ (D) ()
+5 [ (&) - f(n&) - D61 - ¢(-1)) dra(€)
+5 [ (&) = £((€)1.-2) P01~ €(-1) ()

5 / (F(&4) — F(rae) + DPE()(1 — £(—1)) dra(€)
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Applying to the (i + 1) term the 7, measure-preserving change of variables £, — £ yields:
J4© - flenren - e-v)am(e)
<5 [ (1) = F(r1€) + D)L - (1) @)
+5 [(#0) = 1(62) 6@ (1 - €1) i)
+5 [(#0) = 1) — 2P€((1 - €2)) dra(©
+5 [ (716 = 62611~ €(-2)) d7a(©
+5 [(#6) = £m1€) + D621~ ¢(-1)) d(€)

and each of the 5 terms is bounded by 5 x 8 x E/(f). Noting that, by applying the measure preserving change of

variable § — £_1 1,

/(f(f) — f(6-11)) (D)1 = &(=1)) dra(§) = /(f(i) — f(6-11))*E(=1)(1 = &(1)) dra(€)

and thus

/(f(é) = f(€-10))? dTa(€) = 2/(1“(5) — (€))% (1 = &(=1)) dra(€) < C x E(f)

The bound with D(f) in place of F(f) follows from an even simpler decomposition of f(£) — f(£7 ) asa
sum of 5 terms (the same decomposition as before without the constants). In order to show that the last inequality
holds throughout the domain of L recall that a convergent sequence in £ (7 ) has a pointwise almost everywhere
convergent subsequence, and thus, by the core property of C, we conclude that for each f € D(L) we can find a
sequence f,, of elements in C such that f,, — f pointwise almost everywhere and in £(7), and Lf,, — Lf in
L? (7). By Fatou’s lemma and Lemma

€ - s am
— [ imint(£,(6) ~ £, (€10 )
<timint [ (£,(6) = £ (€10 ()

n—oo

<liminf CD(f,,) = liminfC'/(—Lfn)fn AUy
n—oo

n—oo
—C [(-Lpfdm= i)
which completes the proof. U

Definition 18. We call a permutation 7 on a countable set .S a finite permutation if |s € S : w(s) # s| < oo (here
| - | denotes the cardinality of the set).

We recall the Hewitt-Savage 0 — 1 law which can be found in Durrett’s book ([8]).
Theorem 21. Let {X,,}>°, be an i.i.d sequence of real-valued random variables. We define the exchangeable
sigma algebra & as the set of events depending on the sequence { X, }>2 ; which are invariant under finite permu-
tations of the indices of the sequence { X, }°°,. Then A € £ = P(A) € {0, 1}.
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For our next result we need the following result that appears in Sethuraman ([30], Proposition 2.1).
Lemma 19. Let . be an invariant measure on a compact set X and let B denote the Borel o-field on X. Let P*
denote the probability on the path space with initial distribution /¢ and let f denote the £ (y¢) limit of 7 | Ot S(s)f ds.

All the statements below are equivalent.
(i) Forall A € B, S(t)14 = 14 p-as. = u(A) € {0,1}.
(ii) P* is ergodic: For each f € L£*(u), f= E,[f] p-as.
(iii) p € Z..
Lemma 20. The stationary process &; is ergodic.

Proof. The proof is similar to Theorem 5.3 in chapter 5 in part II of Komorowski’s book ([16]). By Theorem ,
the stationary process &, is ergodic iff the initial stationary measure 77, is extremal. By Lemma [LY, 7, is extremal
iff all Borel sets A which satisfy S(¢)14 = 14 forall ¢ > 0 also satisfy 7,(A) € {0, 1}.

Let A be a Borel set satisfying S(¢)14 = 14 forall¢ > 0 and we set f = 1,4. Since f € L*(7,) and
satisfies S(t) f = f forall ¢ > 0 we obtain that f € D(L), since Lf = limy g % = 0 (see the paragraph
after Lemma ). Thus by Lemma L3, D(f) = — [ fLf dvy = O and thus [(f(€) — f(&up))? dVa(€) = O for
a, b # 0 satisfying ‘a - b‘ = 1. By applying Lemma [18, we obtain [(f(£) — f(£-11))? dVa(&) = 0. Thus, for

a.e. & (with respect to 77,)

(&) = f(&11) = f(&ap) - (28)

We note that all transpositions (¢, d) with ¢,d € Z \ {0} can be written as a product of transpositions, where each
transposition in the product either takes the form (a, b) with a,b # 0 and |a — b| = 1 or takes the form (—1,1)
(the proof follows from an induction on the distance between ¢ and d). Thus, for every ¢, d € Z\ {0} we can find
a finite sequence &; such that § = &, &, = &.gand foreach 0 < i < k — 1, &1 = (& )ay.: for z;, y; which
satisfy one of the following conditions for the transposition (x;, y;): (z;,v;) = (—1,1) or (x;,y;) = (a,b) for
some a, b which satisfy a, b # 0 and |a — b| = 1. Thus, by equation (28)

e
—_

f(&) = f(&ea)) = 4 (f(&) = f(&i1)) = Dae. €.

7

Il
o

For each finite permutation o on Z which fixes 0, we write f(0&) = f(&(0(7))iez). Since the transpositions
(c,d) with ¢,d € Z \ {0} generate the finite permutations on Z which fix 0, we conclude by similar reasoning
used in proving f(§) = f(&.q) that for every permutation o on Z which fixes 0, f(c&) = f(£) holds for a.e. &.
Thus, since there are countably many finite permutations on Z which fix 0, we conclude that there exists a set B
with 7;(B) = 1 such that for each £ € B, the equality f(§) = f(o&) holds for all finite permutations ¢ on Z
which fix 0. Weset C' = AN B.

Claim 1. We have ¢ € C' = ¢ € ( for all finite permutations ¢ on Z which fix 0.

Proof. Let £ € C and o a finite permutation on Z which fixes 0. Thus £ € A and thus f(§) = 14(§) = 1. In
addition, £ € B and thus 14(c&) = f(c§) = f(§) = 1so o € A. If we assume o ¢ B then there exists a
finite permutation 7 on Z which fixes 0 such that 1 = f(0&) # f(70&) = 14(70&). Thus, T0€ ¢ A. Since

a composition of two finite permutations on Z which fixes 0 is also a finite permutation on Z which fixes 0, we
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found a finite permutation 70 on Z which fixes 0 such that £ € A but 70¢ ¢ A which contradicts the fact we
already proved that for each finite permutation o on Z which fixes 0, 0§ € A so 0§ € B completing the proof of
the claim. U

Let v, denote the product measure on Z \ {0} and II the projection on Z \ {0}. We note that from the claim
we conclude that {(£(2))icz\ (0} : (£(7))icz\ oy € II(C' N {£(0) = 1})} is in the exchangeable sigma field, i.e.

(£(7))ienjoy € TI(C N {£(0) = 1}) = £(0(4))icz\{oy € II(C' N {£(0) = 1}) for every finite permutation on
Z\ {0}. By applying Hewitt Savage 0-1 law to the sequence (£(%));cz\ {0} We obtain

Va(C) = Za(C' N {E(0) = 1})
= va 1 (I(C' N {£(0) = 1})) = P({£(0) )iez\goy € IHC N {£(0) = 1}}) € {0,1}.

Thus 7, (C') € {0, 1} which completes the proof, since clearly 7,(A) = 7, (C). O

By Lemma [, for all A > 0 we have R(Al — L) = C({0,1}* N {¢ : £(0) = 1}), where here L is the
original operator on C'({0,1}* N {¢ : £(0) = 1}). Since the function ¥(€) = }lzze{il,ﬂ} z(1—&(x)) €
C({0,1}2 N {¢ : £(0) = 1}), we can find a function h € C'({0,1}* N {¢ : £(0) = 1}) which depends on A
such that Ah — Lh = ). This yields the following definition:

Definition 19. We define uy € C({0,1}* N {¢ : £(0) = 1}) for A > 0 via Auy — Luy = 1 where 1(§) =
: D weis1 42y (1 — &(x)) is called the drift.
Lemmas 1] and P2 together form condition H _ (see Def. [14).

Lemma 21. ‘f Y(§)u(€) dvy (€ ’ < C(a)y/D(u) for all u € C with Cy () = @.

Proof. We apply the equality [ u(7,€)(1 — &(x)) dva(€) = [u(§)(1 — &(—x)) dUa(€) to obtain:

' / HEu(E) du—a@)‘
1|2, vou-senamo)
;} o [ (06~ u(me) 1 - ) arilo)

Applying the Cauchy-Schwartz inequality yields:

’ [ (e dv_a(f)'
<§1J > /:v?(lé(x))dv—a(i)J > /(u(f)—u(mﬁ)) (1 —¢&(x)) dug(€)
ze{1,2} z€{1,2}

Applying
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yields:

valza) s / (u€) — u(r.8))*(1 — €(a)) )

ze{1,2}
- 5 Volloa) |1 5 / ) — u(r,))%(1 - &(2)) d7a(€)
a:E{:I:l +2}

< —V5<14_0‘)\/4D(u) _ M D(w)
completing the proof. 0
Lemma 22. | [ u(£)(Luy) () dvg (€ ‘<C’2 )v/D(u) forall u € C with Cy(a) = 1 -9 — ¢ (a).

Proof. By Lemmall, L satisfies [ a(Lb) dv, = [ b(La) dv, foralla,b € D(L) andby Lemmalld, [ a(—La) dv, =
D(a) > 0 forall a € D(L). Thus we can define a semi-inner product (a,b) = [ a(—Lb) dvg on D(L). We
recall the equation defining u, € D(L) for A > 0:

/\U)\ - LU)\ = ¢ (29)

By Lemma 15, D(uy) = [(—Luy)u, dV, and thus, since L is an operator on C'({0, 1}* N {¢ : £(0) = 1}), we
have uy, Luy € C({0,1}* N {&: £(0) = 1}), and thus

D(ws) < [ 12l sl 7 < o (0)
Multiplying equation (29) by u, and integrating by drr, yields:

A/uid%—i—D(uA):/zﬁuAdu_a,

and thus by dropping the first term which is non-negative,

D(U)\) S /’QD’LLA dm (31)

Applying Lemma 1] to u, (more precisely to a sequence f,, € C such that f,, — wy and Lf, — Luy where
the convergence is with respect to £?(77,) and noting that by Lemmas fL0 and 15 D(f,,) = f fa(—=Lf) dvg —
[ ur(—Luy) dvg = D(uy)) yields

/qu g < 5(1T_0‘)\/D(UA) (32)
Equations (B1)) and (B2) yield
]_ _
D(u,\) Oé \/ U)\

and thus, since D(u,) < oo by equation (B0), we can divide both sides by 1/ D(u,) to obtain:

/D) < 1—a)
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Applying the Cauchy-Schwartz inequality for (-, -) yields for all u € C:

' / w(€)(Luy)(€) du—a(@‘ = [(u, uy)|

< \/<u7u>V/<uA7uA>
=+/D(u)v/D(uy)

5(14—@) Dla) 0

Lemma 23. ‘f Y(&)u(€) dvg (€ ’ < Cs(a)y/E(u) forall u € C with C5(a) = Cy/a(l — ).

Proof. Since Y (11 1oy T J u(§) dvg(€) = 0 we obtain:

'/w@ﬂ@m% -1

We note that [ u(€)(6(~x) — £(2)) dTa(€) = [ u(€.0)(E(x) — &(~)) dTa(E) and thus [ u(€)(E(—x) ~
() (€ ::gtf<u )~ u(E-0.)) (6(—) — E(x)) dT(€) and thus:

' [ (e amte \

And thus by inserting the absolute value into the integral:

[voueane|<g X o

ze{1,2}

) dvg

ze{1,2}

5 o [(u(©) ~ ulea)6(-0) - €60) i)

$€{1 2}

dva ()

waﬁa—u@ﬂa—m—sw>

We note that |¢{(—z) — &(z)| = |¢{(—2) — §(q;)|2 since |{(—z) — &(x)| € {0,1} for all & Thus, by the
Cauchy-Schwartz inequality:

‘/w &) (¢
ggz \// (€v) — u(€))” dva(é \//|£ ()] da(§)

ze{l,2}
_ —v%‘gl—“ 3 x\/ / () = u(€))” A7 ()
ze{l1,2}

By Lemma [18, [ (u(¢-1,1) — u(g))Zdz/_a(é) < C x E(u), so the result will follow if we show [ (u({_22) —
u(é )) dvg () < C) x E(u) for some positive C;. We can write (—2, 2) as a multiplication (from left to right)

of the following transpositions

(—=2,2) = (=2,—1)(—1,1)(1,2)(—1,1)(—1,-2). (33)
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Setting § = &, &1 = (§0)-2,-1,§2 = (§1)-1,1, 83 = (§2)12: &4 = (§3)-1,1, &5 = (§4)—1,-2 = €22 and applying

the measure preserving transformations §; — £ yields:

5

/ (u(€_2) — u(€))* dom(€) = / (&) — w0 dr(e)

< 52 [ (ut) — i)’ amae)
— 10/(u(§_2,_1) —u(€))? dva(€)+
10 / (u(€ 1) — u(€))” d7a(©)+

5 / (u(€rz) — u(€)) dva(€)

< 40D.o(u) + C x E(u) < (C + 40)E(u) O

We conclude that

Lemma 24. ‘f Y(E)un() dvg(§)| < Cs(a)y/E(uy) holds for all A > 0 with C3(a) = Cy/a(l — ).

Proof. Fix A > 0. We first note, that when viewing L and L., as operators on C'({0,1}* N {¢ : £(0) = 1}),
clearly D(L) = D(Le,) since L — L, = L, which is a bounded operator. Since uy € C'({0,1}2N{¢ : £(0) =
1}), by the core property of C relative to L., when viewed as an operator on C'({0,1}* N {¢ : £(0) = 1}) we

can find a sequence u,, € C such that ||u,, — u||coc — 0 and || Lezts, — Leztn||oo — 0 as n — 0o. By Lemma

i,
Do) = / (= Leatn) (€)ua (€) 7 (€)
~ lim / (= Lewttn) (€)1 (€) d7a (€)

n—o0

= lim D.,(uy,)

n—o0

By bounded convergence,

T+ U (726) — un(€))*(1 — &(x)) dva(§) —

WL
Py / o+ (7€) — ur(€)*(1 — £(a) A7 (€)

OOIH ool»—t

as n — oo. Thus,

E(us) = Deal) + = / £+ (7€) — 1x(€)*(1 — £(x)) d7(€)

xe{:l:l :|:2}
= lim Do) + lim oS / 7+ (7€) — un (€)1 — () AT (€)
nee xe{il +2)
~tim (D) + 1 3 [t () - (@) - ) o))
me{:l:l +2}
= lim E(u,)

n—o0
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[ ven©am(©| = i [ o6 e
< C3(a) lim /E(uy)

Thus,

= C3(a)\/ E(uy) d

In order to prove Theorem [I], we need the following results in section 4 in part III of Liggett ([21]). The results
can be found in equations 4.26 and 4.49 and the paragraphs which precede and follow it, Proposition 4.1 and
Theorems 4.39, 4.45 and 4.50. We already proved that the conditions of the theorem below holds by the symmetry
of the drift and Lemmas [4, §, B, Rd, 1] and 2.

Theorem 22. We assume that . and L, are Markov generators, that &; is stationary and ergodic, that condition

H_1 holds and that [E¢) = 0. Then the following holds:

i) X; = fo (&,) ds + M, where M, is a square integrable martingale which satisfies that 22 7 converges in

distribution to a Gaussian random variable with non-zero variance and zero mean.

(ii) fot (&) ds = N(t)+D(t), where N(t) is a martingale which satisfies E| N (¢)|* < C't and lim;_, o, E‘Dt(t)
0.

(iii) ux(&) — ua(éo) fo (Luy)(&s) ds + Ny(t), where Ny (t) is a martingale which satisfies ENZ(t) =
2tD(uy) and N)(t) converges to N (t) in £L%(7;) as A | 0. In addition,

] 2
ltlfgl EEN)‘ = hm —E {UA &) — ux fo)} =2D(u,) (34)

(iv) limyjo A [ u3(§) dva(§) = 0.
) % converges in distribution to a (possibly degenerate) Gaussian random variable with zero mean.

Before proving the main theorem we prove that D(u,) satisfies the following property.
Lemma 25. D(uy) /4 0as A | 0.

Proof. Leta(§) =min{i > 1:£(i) =€£(i+ 1) =1} soforall z € {£1, £2}, (ng) — a(§) = —x holds for
a.e. £ with respect to 77, and thus —L,,a = 1) a.s. holds. Since by Lemma [17, Dy (f f f(=Lg,f)dv, and
by Lemma@ J f(=Lsng) dvg = [ g(—Lsnf) dvg we obtain

5 Y [arnmo - n@r - )

xe{il +2}
5 Y [ - ang) ~ un©) +a(©)(1 - ) () = Dalus — o
xG{:I:l +2}

and thus
E(uy) = Dez(uy) + Dgp(uy — a)
= Dslun) + [ (13 = @)(~La) s~ a)
= D) + Darfux) + Darla) = [ wr(~Lara) v~ [ (= Lovur)

= D(U)\) + D5h<a) - 2/77/)u,\ dr,

2
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Plugging in vy = Auy — Lu,, yields
E(uy) = D(uy) + Dgp(a) — 2 /(/\u,\ — Luy)uy dv,
= D(uy) + Dgp(a 2)\/u?\ dvy — 2D(uy)
= Dufa) = Dlws) = 22 [ o i (35)

We estimate Dy, (a). We plug in ¢ = Auy — Lu,y

Daa) = [ al-Laa) vy
~ [vadn;
:/(zp—m)admﬂ/wdy—a
:/a(—LuA)du_a%—)\/u,\adm

Writing L = L., + L, and applying once again [ f(—Lg,g) dvq = [ g(—Lg,f) dUy yields:
Dgyy(a) = /a(—Lewu,\)dV_a—I—/a(—LshuA)dV_a—i-/\/u,\adZ
= /a(—Lexu,\)dl/_a—k/u,\(—Lsha)du_aqL)\/u,\adZ

:/a(—Lexu,\) du_a+/qudl/_a+)\/u)\adu_a

Plugging in v» = A\uy — Lu,, yields

Dgy(a) = /a(—LegjuA) dl/_a—i-/(/\u,\ — Luy)uy dvg + )\/uAadV_a
:D(u,\)+/a(—Lexu,\)dl/_a—k)\/u,\ady_a+/\/u§dy_a
Thus, plugging this into equation (B5) yields
E(uy) :/a(—qu,\) dl/_a—l—/\/u,\ady_a—)\/u?\dm

By Lemma (i1, for all f,g € D(
a € D(Le.) we have 0 < D.,(a) =
D(Le;) via{a,b)er = [ a(—Leyb) dvg. By applying Cauchy-Schwartz and applying part (iv) in Theorem P2, we

L.,) we have f(Lexf)g dv, = f f(Lexg) dv, and by Lemma [16, for all

a [ (=Leza)(&)a(€) dug(€), so we can define a semi inner product on

conclude that

E(uy) < \/Dew<a) \/Dex(uk) +0o(1) (36)
as \ | 0. Thus, if we assume that D(uy) — 0 as A | 0 then by equation (B6)

E(U)\) — 0
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as A | 0 and by equation (B5), part (iv) in Theorem P2 and by the definition of Dgp,(a) after Lemma 12, together
with the above fact that a(n,£) — a(§) = —z forz € {£1,+£2}

E(u,\) — Dsh(a) 7é 0
as A | 0 so thus the assumption cannot hold completing the proof. 0

Theorem 1. The position of the tagged particle, X, satisfies X/ \/t converges in distribution to a normal random

variable with non-zero variance and zero mean.

Proof. The proof is similar to the proof of Theorem 4.55 in section 4 in part I1I of Liggett ([21]). By parts (i) and (ii)
in Theorem P2, we can write X, = N (t)+ M, + D(t). By part (v) of Theorem 3 X, //t converges in distribution
to a mean zero normal random variable. Thus, it suffices to show that 1 E(X;)* = 1 E(N(¢) + M, + D(t))? > C

w > (' since
limy; o w = 0. Since N (t) + M, is a martingale, it has orthogonal increments and thus, using also that 7, is
stationary, we obtain that E( N (¢)+ M;)? = tE(N(1)+ M )?. Thus, it suffices to prove that E( N (1) +M;)? > 0.
Forall A > 0 by equation (81)), D(u,) < [ tu, dv, and by Lemma R4, [ ¢u, dv, < C'\/m o)

D(U)\) S C\/E(U)\) (37)

Lemma RJtells us that D(uy) /4 0as A | 0. By equation (B7), E(uy) 4 0as\ | 0. For g\(z, &) = x+uy(€) the
following holds by adding the two equations in parts (i) and (iii) in Theorem P2 and recalling that ¢ + Luy = Auy

for some positive constant C' for ¢ sufficiently large which will follow from proving

and noting that Xy = O:

00X &) — ga(Xo, &) = / Nu(€.) ds + Na() + M,

Since by part (iv) in Theorem R2, A [ u3 dr, is bounded for A > 0 bounded from co we obtain by Cauchy-

Schwartz, noting that by stationarity
B[ 6] = [ e = [iserd@ane = [dedmse]© - [
(here S(s) is the semigroup generated by L):
t 2 t
E { /0 Auy (&) ds} < \tE l /O us (&) ds} = \’t? / u dvg, < OM? (38)
Thus:

E _NA(t) + Mt] 2

t

E|g2(X0 &) — a(Xo. &)} CE {fé DUN(S ds}

= - + . (39)

28 (31(X6,60 - X0, &0 ) Non2) ]
t

2
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So by equation (B8),

. E { 7 Aua (&) ds] 2

tl0 t

=0 (40)

and similarly,

Q‘EK”(X“&) B gA(meO)) I )\uA(gs)ds} < Q(E [g)\(Xt,ft) - gA(meo)} 2> 1/2 X

t - t

E{ () ds} 2) N
<2/C (E {QA(XM &) — 9 (Xo, 50)} 2) :
< 2\/5(21[-4: Uot Aux(€5) dS} o [Nk(t) " Mt} 2)

2\ 1/2
< 2\/5(20152 + 2E [NA(l) + Mll > -0

—
S~

1/2

ast ] 0so

2E|:(9A(Xt7£t> 9r(Xo, &0 >f0 Auy (&) d 1
lim —

i r = 0. (41)

2
We still need to deal with the term %IE [g,\(Xt, &) — gx(Xo, {0)} . We recall that Xy = 0.

%E I X, &) — 9A<Xoa§0)} T lE |:Xt +ua(é) — UA(&))} 2

—E lXQ + X&)

t t

- QUA(ﬁo)Xt} !

+ 186 (@]

9 2
= oo | 204 2R g 60T | ) + B[ un(6) - (o)

= [ |3 Xz 4 2 1 LB (X)) - 2uslen) x TERX e
1 2
+E [Uk(ft) - UA(&))}

-/ [m 2)(0,€) + 2L Xu) (0, €) — 2ux(€) (LX) 0, f)] 47:(6) + 2D(w)

ast | 0 by equation (B4). We note that the functions f(z,&) = 22, fo(x,€) = zuy(€) and f3(x, &) = x do not
belong to the domain of L as they are unbounded functions, so an approximation argument is required in order to
justify the last step. When we applied L; to these functions we meant plugging in the functions into the formula
of L, noting that since the functions f; and f3 do not depend on the movement of the untagged particles clearly
Lepfi = Lepfs = 0 and similarly (Le, f2)(2,£) = xLey(uy) so all the infinite sums converge and thus the
integrals can be evaluated. We provide the full approximation argument for f; (the other functions are dealt with

in a similar way). Let f{' be a non-negative sequence of functions belonging to the domain of L; which depend
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only on z (i.e. for all z and 7 and all n, f*(x,n) = fI*(x)) which satisfy for each n f7*(x,n) = x> whenever
|z| < nandalso f < f{"*! (i.e. the sequence is an increasing sequence) and f7'(z,71) < x%. Let S(t) be the
semigroup generated by L1, i.e. (S(t)f)(Xo,&) = EX0€) £( X, &). By monotone convergence, for each &,
(S(t)fm)(0,&) /N EO) X2 asn — co. Thus, by Fatou’s lemma

—00

[ [iroxt - woxo.0] e = [ m | somo.0 - @x)0.6)| ae

gmm/ﬁwwm@—mvmﬂwm@

n—oo

< lim inf sup
n—oo §

HEO0.9 - (LX20.)

The exclusion process for our model starting from (z, 77) can be obtained by placing independent Poisson clocks
with rate 1 on Z. When the clock at the origin rings (x, 7) moves with probability 1/4 to (x + i, 7;n) if (i) = 0
for i € {£1,£2} and when the clock at position j # 0 rings then (x,7) moves to (z,7; +;) with probability
1/2fori € {£1}if j+ 4 # Oandn(j + 1) = 0. Let A; denote the number of times the Poisson clock at the

origin rang until time ¢ and let A% denote the numbr of times the Poisson clock at 7 rang until time ¢. Thus,

wwmQQZEjMWMuﬁa

k>0,k#£1
A=1, > Ai:o]P{Atzl, > Ai:o]

+Wﬁﬁm@>
{ie+1,+2,43} {ie+1,4£2,43}

A=1, > 4@>0Fﬂ&:4, > ,ﬁ>o}

{ie+1,+2,+3} {ie+1,+2,4+3}

&=4M&=H

+EO9 [f?(Xt, &)

Since for each n > 2 and k& > 2 the following inequalities hold

E© [f?(Xt, &)

At:0:|:0

Wﬁﬁw@>

A=t X a=o] = w09

{ie+1,42,43}

‘E(O’@ [ff(ant) A = k?] < 4k?
(1"
P[At = k] =e E

P {At =1, Z Al = 01 = e Oe't

{ie+1,4+2,+3}

P{At =1, Z Al > O} =(1—e et

{ie+1,+2,4+3}

E©) [f?(Xt, &)

A=1, > Aj;>o]§4

{ie+1,+2,4+3}

we conclude that for all £ andall n > 2 and all ¢ > 0,

%(S(t)ff’)(O,g) - (L1X2)(0,§)| < (C't where C'is
independent of n and thus lim; | [ 1EC9X2 dvg(€) = [(L1X?)(0,€) dva(€) which completes the proof for

2
f1. We now return to the expression we obtained for lim, %E [g,\(Xt, &) — ga(Xo, 50)} and we first deal with
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its last two terms. Since (L1 X)(0,&) = 1(&) we obtain

/[_QUA(S)(LIX)(()’&)] 76 (§) + 2D (uy) = —2/%(5)1/)(5) dva(8) + 2D (uy) (42)

We now deal with the first two terms. First we note that, by applying Lemma [L2 to the functions f = u?\ and

g = 1, we obtain that | Lg,u3 dv = 0. Plugging in the formulas for L1 X? and L; Xu, yields

[ [1x90.9 + 200x0)0.6)| amate
i = fu-ciry X 2o - )] wne

ie{+1,+2} ie{+1,4+2}

:/% ) (i + un(€))? - 1&(%5)} (1= £(8) dug ()

ie{+1,42} -

= / i > (i -+ un(16))? — () + B (€) — ﬁ(nf)} (1—&(i) dra()

ie{+1,+2} -

N / i > |6+ ume - ui@] (1= £(0)) dva(é) — / (Lant3)(€) A7 (€)

ie{+1,+2} -

~[1 T | w2 -] - .

ie{+1,42} -

If we write

i+ ux(1i€) =i+ ux(1:€) — ur(&) + upr(§)

then

(i + ua(7:€))? = (i + ur(:€) — un(§))* + u3(€)
+ 2ux () (@ + ur(T:§) — ur(§))

and thus, recalling that ¢ (§) =  >_.c (41,42} (1 —&(@)) and by the definition of F'(a) which appears after Lemma
12 and by Lemma [L7 we obtain:

[ 2 [+ unor-ao]o-dme

ie{+1,+2}

:/i Z {(Z‘—FUA(H@—u/\(g))Z+2u)\(§)(i+U>\(Tif)—u)\(g))} (1 —£(0)) dog(€)

ie{+1,+2}

:/i Z (i + ux(r:€) — ua(€))*(1 —é(i))dv_a(£>+2/m(£)w(£) dV_a+2/u,\(§)Lsh(§) dv,

ie{+1,+2}

—25(uy) — 2D (1y) + 2 / ur(€)(€) d — 2D ()

SO

[3 5 [i+ueor - @] o ane - 250 - 200 +2 [ wEve am @

ie{+1,+2}
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By adding equations (42)) and (43) we conclude that

/ [<L1X2><o, €) + 2(L1 Xu2)(0,€) — 2ux(€) (LX) 0, 5)} 47 (€) + 2D (uy) = 2B(uy)

and thus

E[0n(60.6) - 0% &)T

ltlﬁ)l ; = 2F(uy) (44)

Thus, by plugging in equations (#0), (41)) and (#4) into equation (BJ)
2
Since Ny (1) — N(1)in £%(75) as A | 0 by part (iii) in Theorem P2 we obtain:
2
E{N(l) + Ml} = 21/\1&)1E(u,\) >0

as observed after equation (B7) completing the proof. ]
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